Improved Opponent Modeling in Poker
نویسندگان
چکیده
The game of poker has many properties that make it an interesting topic for arti cial intelligence (AI). It is a game of imperfect information, which relates to one of the most fundamental problems in computer science: how to handle knowledge that may be erroneous or incomplete. Poker is also one of the few games to be studied where deriving an accurate understanding of each opponent's style is an essential element to success. In developing a strong poker program, the opponent modeling method has always been a central component of the system. As other aspects of the program were improved, the techniques for modeling once again became a limiting factor to the overall level of play. As a result, the topic has been revisited. This paper reports on recent progress achieved by improved statistical methods, which were suggested by experiments using arti cial neural networks.
منابع مشابه
Active Sensing for Opponent Modeling in Poker
One approach to designing an intelligent agent capable of winning competitive games such as Texas hold’em poker is to use opponent modeling to learn about an opponent’s behavior, then exploit that knowledge to maximize long term winnings. However, opponent modeling can suffer from several problems, including slow convergence due to a lack of a priori knowledge, noisy or dynamic opponent behavio...
متن کاملUsing Kullback-Leibler Divergence to Model Opponents in Poker
Opponent modeling is an essential approach for building competitive computer agents in imperfect information games. This paper presents a novel approach to develop opponent modeling techniques. The approach applies neural networks which are separately trained on different dataset to build Kmodel clustering opponent models. KullbackLeibler (KL) divergence is used to exploit a safety mode on oppo...
متن کاملAn Experimental Approach to Online Opponent Modeling in Texas Hold'em Poker
The game of Poker is an excellent test bed for studying opponent modeling methodologies applied to non-deterministic games with incomplete information. The most known Poker variant, Texas Hold'em Poker, combines simple rules with a huge amount of possible playing strategies. This paper is focused on developing algorithms for performing simple online opponent modeling in Texas Hold'em. The oppon...
متن کاملPoker Opponent Modeling ∗ Michel Salim and Paul Rohwer
Utilizing resources and research from the University of Alberta Poker research group, we are investigating opponent modeling improvements. Currently, our simple poker bot plays online against instantiations of PokiBots, the poker machine created by the University of Alberta research group. After some decision rule building, our poker bot is competitive. Our next step is to build upon this resea...
متن کاملUniversity of Alberta expert poker agent: A survey
Games have always been a natural topic for Artificial Intelligence researchers to study and poker has proven to be a game that is both interesting and challenging. Part of the challenge of poker comes from the fact that it is a game of imperfect knowledge where multiple competing agents must deal with risk management, agent modeling, unreliable information and deception, much like decision-maki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000